AHEART September 46/
نویسنده
چکیده
Parthimos, D., D. H. Edwards, and T. M. Griffith. Minimal model of arterial chaos generated by coupled intracellular and membrane Ca21 oscillators. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1119–H1144, 1999.—We have developed a mathematical model of arterial vasomotion in which irregular rhythmic activity is generated by the nonlinear interaction of intracellular and membrane oscillators that depend on cyclic release of Ca21 from internal stores and cyclic influx of extracellular Ca21, respectively. Four key control variables were selected on the basis of the pharmacological characteristics of histamine-induced vasomotion in rabbit ear arteries: Ca21 concentration in the cytosol, Ca21 concentration in ryanodine-sensitive stores, cell membrane potential, and the open state probability of Ca21-activated K1 channels. Although not represented by independent dynamic variables, the model also incorporates Na1/Ca21 exchange, the Na1-K1-ATPase, Cl2 fluxes, and Ca21 efflux via the extrusion ATPase. Simulations reproduce a wide spectrum of experimental observations, including 1) the effects of interventions that modulate the functionality of Ca21 stores and membrane ion channels, 2) paradoxes such as the apparently unpredictable dual action of Ca21 antagonists and low extracellular Na1 concentration, which can abolish vasomotion or promote the appearance of large-amplitude oscillations, and 3) period-doubling, quasiperiodic, and intermittent routes to chaos. Nonlinearity is essential to explain these diverse patterns of experimental vascular response.
منابع مشابه
AHEART September 46/
DOUGLAS R. SEALS, EDITH T. STEVENSON, PAMELA P. JONES, CHRISTOPHER A. DESOUZA, AND HIROFUMI TANAKA (With the Technical Assistance of Cyndi Long and Mary Jo Reiling) Human Cardiovascular Research Laboratory, Center for Physical Activity, Disease Prevention, and Aging, Department of Kinesiology and Applied Physiology, University of Colorado, Boulder 80309, and Department of Medicine, Divisions of...
متن کاملAHEART September 46/
FERENC DOMOKI,1,3 ROLAND VELTKAMP,1,2 NISHADI THRIKAWALA,1 GREG ROBINS,1 FERENC BARI,1,3 THOMAS M. LOUIS,4 AND DAVID W. BUSIJA1 1Department of Physiology and Pharmacology and 2Stroke Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083; 3Department of Physiology, Albert Szent-Györgyi Medical University, Szeged, H-6720 Hungary; 4Department of Anato...
متن کاملAHEART September 46/
Gyenge, C. C., B. D. Bowen, R. K. Reed, and J. L. Bert. Transport of fluid and solutes in the body. I. Formulation of a mathematical model. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215–H1227, 1999.—A compartmental model of shortterm whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartme...
متن کاملAHEART October 46/4
F. COCEANI,1 Y.-A. LIU,1 E. SEIDLITZ,1 L. KELSEY,1 T. KUWAKI,3 C. ACKERLEY,2 AND M. YANAGISAWA4 1Integrative Biology Programme and 2Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8; 3Department of Physiology, School of Medicine, Chiba University, Chiba, 260-8670 Japan; and 4Howard Hughes Medical Institute and Department of Molecular Genetics, University of...
متن کاملAHEART November 46/5
RAGAVENDRA R. BALIGA,1 DAVID R. PIMENTAL,1 YOU-YANG ZHAO,2 WILLIAM W. SIMMONS,1 MARK A. MARCHIONNI,3 DOUGLAS B. SAWYER,1 AND RALPH A. KELLY1 1Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston 02115; 3Cambridge Neurosciences, Cambridge, Massachusetts 02139; and 2Department of Medicine, University of California at San Diego School of Medicine, La Jolla, Cali...
متن کامل